21 กรกฎาคม 2552


ปิโตรเลียม คือ สารพวกไฮโดรคาร์บอนและอาจจะพบสารอินทรีย์ที่มีธาตุ O N หรือ S เป็นองค์ประกอบอยู่บ้างเล็กน้อย เกิดจากการตายทับถมของซากพืชซากสัตว์นับเป็นเวลานับล้าน ๆ ปี
ปิโตรเลียม
1. ก๊าซธรรมชาติ คือ ก๊าซไฮโดรคาร์บอนมี CH4 C2H6 C3H8 C4H10 ส่วนมากจะเป็น CH4
2. น้ำมันดิบ คือ สารประกอบไฮโดรคาร์บอนจำนวนมากมายปนกัน สารพวกนี้มีจุดเดือดแตกต่างน้อย จึงแยกด้วยวิธีการกลั่นลำดับส่วน


สารไฮโดรคาร์บอนที่แบ่งได้จากการกลั่นลำดับ เรียงจากจุดเดือดต่ำไปหาสูง ดังนี้
ก๊าซปิโตรเลียม (C1 - C4), น้ำมันเบนซิน, น้ำมันก๊าด, น้ำมันดีเซล, น้ำมันหล่อลื่น, ไข, น้ำมันเตา, บิทูเมน
สารประกอบไฮโดรคาร์บอนที่มีขนาดใหญ่จำนวน C อะตอมมาก มีประโยชน์น้อย ราคาต่ำมาเปลี่ยนเป็นสารที่มีขนาดโมเลกุล และมวลโมเลกุลใกล้เคียงกับน้ำมันเบนซินและน้ำมันดีเซล และปรับปรุง โครงสร้างของโมเลกุลให้เป็นเชื้อเพลิงที่มีคุณภาพดีขึ้นดังนี้
ก. กระบวนการแตกสลาย (Cracking)
ข. การรีฟอร์มมิง (Reforming)
ค. การแอลคิเลชัน (Alkylation)

สารประกอบไฮโดรคาร์บอนที่จะใช้เป็นเชื้อเพลิงที่ดีในรถยนต์ต้องมีลักษณะ ดังนี้
1. โมเลกุลได้ขนาด ที่มี C5 - C10
2. โมเลกุลมี C ต่อกันแตกกิ่งก้านสาขา

พอลิเมอร์ (Polymer) คือ สารประกอบที่มีโมเลกุลขนาดใหญ่ และมีมวลโมเลกุลมากประกอบด้วย หน่วยเล็ก ๆ ของสารที่อาจจะเหมือนกันหรือต่างกันมาเชื่อมต่อกันด้วยพันธะโคเวเลนต์
มอนอเมอร์ (Monomer) คือ หน่วยเล็ก ๆ ของสารในพอลิเมอร์

พอลิเมอร์ แบ่งตามเกณฑ์ต่าง ๆ ดังนี้
แบ่งตามการเกิด
ก. พอลิเมอร์ธรรมชาติ เป็นพอลิเมอร์ที่เกิดขึ้นเองตามธรรมชาติ เช่น โปรตีน แป้ง เซลลูโลส ยางธรรมชาติ
ข. พอลิเมอร์สังเคราะห์ เป็นพอลิเมอร์ที่เกิดจากการสังเคราะห์เพื่อใช้ประโยชน์ต่าง ๆ เช่น พลาสติก ไนลอน ดาครอนและลูไซต์

แบ่งตามชนิดของมอนอเมอร์ที่เป็นองค์ประกอบ
ก. โฮมอลิเมอร์ เป็นพอลิเมอร์ที่ประกอบด้วยมอนอเมอร์ชนิดเดียวกัน เช่น แป้ง พอลิเอทิลีน PVC


ข. โคพอลิเมอร์ เป็นพอลิเมอร์ที่ประกอบด้วยมอนอเมอร์ต่างชนิดกัน เช่น โปรตีน พอลิเอสเทอร์



โครงสร้างของพอลิเมอร์
ก. พอลิเมอร์แบบเส้น
เป็นพอลิเมอร์ที่เกิดจากมอนอเมอร์สร้างพันธะต่อกันเป็นสายยาว โซ่พอลิเมอร์เรียงชิดกันมากว่าโครงสร้างแบบอื่น ๆ จึงมีความหนาแน่น และจุดหลอมเหลวสูง มีลักษณะแข็ง ขุ่นเหนียวกว่าโครงสร้างอื่นๆ ตัวอย่าง PVC พอลิสไตรีน พอลิเอทิลีน
ข. พอลิเมอร์แบบกิ่ง
เป็นพอลิเมอร์ที่เกิดจากมอนอเมอร์ยึดกันแตกกิ่งก้านสาขา มีทั้งโซ่สั้นและโซ่ยาว กิ่งที่แตกจาก พอลิเมอร์ของโซ่หลัก ทำให้ไม่สามารถจัดเรียงโซ่พอลิเมอร์ให้ชิดกันได้มาก จึงมีความหนาแน่นและจุดหลอมเหลวต่ำยืดหยุ่นได้ ความเหนียวต่ำ โครงสร้างเปลี่ยนรูปได้ง่ายเมื่ออุณหภูมิเพิ่มขึ้น ตัวอย่าง พอลิเอทิลีนชนิดความหนาแน่นต่ำ
ค. พอลิเมอร์แบบร่างแห

เป็นพอลิเมอร์ที่เกิดจากมอนอเมอร์ต่อเชื่อมกันเป็นร่างแห พอลิเมอร์ชนิดนี้มีความแข็งแกร่ง และเปราะหักง่าย ตัวอย่างเบกาไลต์ เมลามีนใช้ทำถ้วยชาม
ปฏิกิริยาพอลิเมอร์ไรเซชัน
พอลิเมอร์ไรเซชัน (Polymerization) คือกระบวนการเกิดสารที่มีโมเลกุลขนาดใหญ่ (พอลิเมอร์) จากสารที่มีโมเลกุลเล็ก (มอนอเมอร์)
ปฏิกิริยาพอลิเมอร์ไรเซชัน
ก. ปฏิกิริยาพอลิเมอร์ไรเซชันแบบเติม
ข. ปฏิกิริยาพอลิเมอร์ไรเซชันแบบควบแน่น
หมายเหตุ พอลิเมอร์บางชนิดเป็นพอลิเมอร์ที่เกิดจากสารอนินทรีย์ เช่น ฟอสฟาซีน ซิลิโคน

สารชีวโมเลกุล

สารชีวโมเลกุล
อาหาร คือ สารที่เข้าสู่ร่างกายไปแล้วจะทำให้สิ่งมีชีวิตเจริญเติบโต ให้พลังงานเพื่อความแข็งแรง และซ่อมแซมส่วนที่สึกหรออาหารประเภทต่างๆ ที่รับประทานในแต่ละวัน จำแนกออกได้เป็นหมู่ใหญ่ๆ คือ
หมู่ที่ 1 เนื้อสัตว์ต่าง ๆ ไข่ ถั่วเมล็ดแห้ง นม
หมู่ที่ 2 ข้าว แป้ง น้ำตาล เผือก มัน และน้ำตาล
หมู่ที่ 3 ผักใบเขียว และพืชผักอื่น ๆ
หมู่ที่ 4 ผลไม้ต่าง ๆ
หมู่ที่ 5 ไขมันจากสัตว์และพืช
สารอาหาร (Nutrient) คือ สารที่เป็นองค์ประกอบของอาหาร แบ่งตามหลักโภชนาการได้แก่ โปรตีน คาร์โบไฮเดรต มัน วิตามิน เกลือแร่ และน้ำปริมาณสารอาหารประเภทต่างๆ

สารชีวโมเลกุล (Biomolicules) หมายถึง สารประกอบที่ทำหน้าที่ 2 อย่างในเซลล์ของสิ่งมีชีวิต คือ เป็นโครงสร้างและสารทำหน้าที่ของเซลล์ สารเหล่านี้ได้แก่ น้ำ เกลือแร่ โปรตีน คาร์โบไฮเดรต ลิปิด และกรดนิวคลีอิก อาจรวมถึงก๊าซออกซิเจนและก๊าซคาร์บอนไดออกไซด์ด้วย




คาร์โบไฮเดรต
คาร์โบไฮเดรต (Carbohydrate) คือ สารอินทรีย์ที่ประกอบด้วยธาตุ C H และ O อัตราส่วนโดยอะตอมของ H : O = 2 :1 เช่น C 3H 6O 3 C 6H 12O 6 (C 6H 10O 5) n โดยมีหมู่คาร์บอกซาลดีไฮด์ (-CHO) และหมู่ไฮดรอกซิล (-OH) หรือหมู่คาร์บอนิล (-CO) และหมู่ไฮดรอกซิล (-OH) เป็นหมู่ฟังก์ชัน

ประเภทของคาร์โบไฮเดรต
คาร์โบไฮเดรตสามารถแบ่งตามโครงสร้างออกเป็น 3 ประเภท คือ

1. มอนอแซ็กคาไรด์ (Monosaccharides) หรือน้ำตาลโมเลกุลเดี่ยว มีสูตรทั่วไปเป็น C n H2n O n ซึ่งจะมี 2 ประเภทคือ
- น้ำตาลอัลโดส (aldoses) เป็นน้ำตาลที่มีหมู่คาร์บอกซาลดีไฮด์ เช่น กลูโคส กาแลกโตส และไรโบส เป็นต้น
- น้ำตาลคีโตส (ketoses) เป็นน้ำตาลที่มีหมู่คาร์บอนิล ไ ด้แก่ ฟรุกโตส เป็นต้น


2. ไดแซ็กคาไรด์ (Disaccharides) หรือน้ำตาลโมเลกุลคู่ ได้แก่ แลคโตส มอลโตส และซูโครส ซึ่งเกิดจากการรวมตัวของ Monosacharide 2 โมเลกุล โดยกําจัดน้ำออกไป 1 โมเลกุล เช่น ซูโครส (C12H22O11) เกิดจากกลูโคสรวมตัวกับฟรุกโตส ดังภาพ




3 . พอลีแซ็กคาไรด์ (Polysaccharides) เช่น แป้ง เซลลูโลส ไกลโคเจน (ดังภาพข้างล่าง) เกิดจาก Monosacharide หลายๆ โมเลกุลจำนวนมากมายต่อรวมกันเป็นพอลิเมอร์ ดังสมการ
n C6H12O6 ---------------> ( C6H10O5 )n + n H 2O

Polysacharide แบ่งตามแหล่งที่พบได้ดังนี้
- จากพืช ได้แก่ แป้ง (Starch) เซลลูโลส (Cellulose) และอะไมโลส (Amylose)
- จากสัตว์ ได้แก่ ไกลโคเจน (Glycogen)




สมบัติของคาร์โบไฮเดรต
1. มอนอแซ็กคาไรด์ (Monosaccharides) มีสถานะเป็นของแข็ง ละลายน้ำ มีรสหวาน ทำปฏิกิริยากับสารละลายเบเนดิกต์เกิดตะกอนสีแดงอิฐ (Cu 2O)

2. ไดแซ็กคาไรด์ (Disaccharides) มีสถานะเป็นของแข็ง ละลายน้ำ มีรสหวาน สามารถเกิดการไฮโดรลิซิสได้ Monosaccharide 2 โมเลกุล และทำปฏิกิริยากับสารละลายเบเนดิกต์เกิดตะกอนสีแดงอิฐ (Cu 2O) ยกเว้นซูโครส

3. พอลีแซ็กคาไรด์ (Polysaccharides) มี สถานะเป็นของแข็ง ไม่ละลายน้ำ ไม่มีรสหวาน เกิดการไฮโดรลิซิสได้ Monosaccharide ที่เป็นกลูโคสจำนวนมากมาย


การทดสอบคาร์โบไฮเดรต
1. มอนอแซ็กคาไรด์และไดแซ็กคาไรด์ ซึ่งเป็น สารอินทรีย์ที่มีหมู่คาร์บอกซาลดีไฮด์ (-CHO) เมื่อต้มกับสารละลายเบเนดิกต์ (Cu 2+/ OH -)



สารละลายเบเนดิกต์ (Benedict solution) เป็นสารละลายผสมระหว่าง CuSO 4 Na 2CO 3 และโซเดียมซิเตรด เป็น Cu 2+/ OH - มีสีน้ำเงิน
2. พอลีแซ็กคาไรด์
2.1 แป้ง : เติมสารละลายไอโอดีนจะได้ตะกอนสีน้ำเงิน แต่ไม่ให้ตะกอนสีแดงกับสารละลายเบเนดิกต์


2.2 น้ำตาลโมเลกุลใหญ่ เช่น แป้ง และสำลี ( เซลลูโลส) เมื่อนำมาเติมสารละลายเบเนดิกซ์ จะไม่เห็นการเปลี่ยนแปลง แต่ถ้าเติมกรดแล้วนำมาต้มจะเกิดปฎิกริยาไฮโดรลิซิส ซึ่งสามารถเกิดตะกอนสีแดงอิฐกับสารละลายเบเนดิกซ์ได้

เกร็ดความรู้เพิ่มเติม
เมื่อรับประทานพวกแป้งในน้ำลายจะมีเอนไซม์อะไมเลส (Amylase) จะเปลี่ยนเป็นน้ำตาลที่ร่างกายนำไปใช้ได้ถ้ามีเหลือจะเก็บสะสมไว้ที่ตับหรือกล้ามเนื้อการหมัก (Fermentation) คือ กระบวนการเปลี่ยนสารอินทรีย์ในการที่ไม่ใช้ O 2 โดยมีสิ่งมีชีวิต เช่น ยีสต์เป็นตัวเร่งปฏิกิริยา ได้สารผลิตภัณฑ์ เช่น แอลกอฮอล์


ลิพิด
ลิปิด (Lipid) คือ สารประกอบอินทรีย์ที่ได้จากเนื้อเยื่อพืชและสัตว์ เป็นสารที่ละลายในตัวทำละลายอินทรีย์ เป็นโมเลกุลโควาเลนต์ไม่มีขั้ว เช่น เบนซีน เป็นสารที่ไม่ละลายน้ำ ตัวอย่าง ไขมัน น้ำมัน แว็กซ์ ( wax) สเตอรอยด์ เป็นต้น
กรดไขมัน (Fatty acid)
กรดไขมัน เป็นกรดที่เกิดในธรรมชาติจากการไฮโดรลิซิสไตรกลีเซอไรด์ (เป็นปฏิกิริยาย้อนกลับของปฏิกิริยาเอสเทอริฟิเคชัน) กรดไขมันที่พบโดยทั่วไปจะมีจํานวนของคาร์บอนเป็นเลขคู่ ที่พบมาก คือ 16 หรือ 18 อะตอม และจะ ต่อกันเป็นสายยาวไม่ค่อยพบแตกกิ่งก้านสาขา และขดเป็นวงปิด กรดไขมัน แบ่งออกเป็น 2 ประเภทใหญ่ๆ คือ
1. กรดไขมันอิ่มตัว (saturated fatty acids) หมู่แอลคิลจะมีแต่พันธะเดี่ยว เช่น กรดไมริสติก กรดปาล์มิติก กรดสเตียริก
2. กรดไขมันไม่อิ่มตัว (unsaturated fatty acids) หมู่แอลคิลจะมีพันธะคู่อยู่ด้วย เช่น กรดปาล์มิโตเลอิก กรดโอเลอิก กรดลิโนเลอิก กรดลิโนเลนิก



ภาพแสดงความแตกต่างของโครงสร้งระหว่าง กรดไขมันอิ่มตัวกับกรดไขมันไม่อิ่มตัว


สมบัติของกรดไขมัน
กรดไขมันส่วนมากมีจำนวน C อะตอม C 12 - C 18 ชนิดที่มีจำนวน C อะตอมน้อยกว่า 12 ได้แก่ กรกบิวทาโนอิก C 3C 7COOH ที่พบในเนย กรดไขมันไม่ละลายน้ำ กรดไขมันจะมีจุดเดือดและจุด หลอมเหลวสูงขึ้นตามจำนวนคาร์บอนอะตอมที่เพิ่มขึ้น และกรดไขมันอิ่มตัวมีจุดเดือดสูงกว่ากรดไขมันไม่อิ่มตัว ที่มีมวลโมเลกุลใกล้เคียงกัน

ไขมันและน้ำมัน
ไขมันและน้ำมัน (Fat and oil) คือ สารอินทรีย์ประเภทลิปิดชนิดหนึ่ง มีหมู่ฟังก์ชันเหมือนเอสเทอร์ จึงจัดเป็นสารประเภทเอสเทอร์ชนิดหนึ่งที่มีโมเลกุลขนาดใหญ่ พบทั้งในพืชและสัตว์ ซึ่งมีสูตรทั่วไปดังนี้


การเตรียม
เกิดจากกรดอินทรียที่เรียกว่ากรดไขมันรวมกับอัลกอฮอล์ทีมี -OH 3 หมู่ ที่เรียกว่า กรีเซอรอล จะได้สารที่เรียกว่า กลีเซอไรด์ (Glyceride) หรือกลีเซอริลเอสเทอร์ (Glyceryl Ester) ดังสมการ



ไขมันเป็นของแข็งที่มักพบในสัตว์ประกอบด้วยกรดไขมันอิ่มตัว มากกว่ากรดไขมันไม่อิ่มตัว เช่น ไขวัว ไขควาย ส่วนน้ำมันเป็นของเหลวที่มักพบในพืชประกอบด้วยกรด ไขมันไม่อิ่มตัวมากกว่ากรดไขมันอิ่มตัว เช่น น้ำมันมะกอก ซึ่งไขมันมีจุดเดือดสูงกว่าน้ำมัน ไม่ละลายน้ำ แต่ละลายได้ดีในตัวทำละลายไม่มีน้ำ เช่น เบนซีน และไขมันและน้ำมันเสียจะเกิดกลิ่นเหม็นหืน ซึ่งเกิดจาก พันธะคู่ในกรดไขมัน ไขมันหรือน้ำมันที่ไม่อิ่มตัวจะถูก ออกซิไดซ์ได้ด้วยออกซิเจน ในอากาศ หรืออาจเกิด การไฮโดรลิซิสกับน้ำ โดยมีจุลินทรีย์เป็นตัวเร่งปฏิกิริยา ทําให้ได้กรดไขมันโมเลกุลเล็กที่ระเหยง่ายมีกลิ่นเหม็น หืน ดังสมการ

การป้องกัน : เติมสารกันเหม็นหืน (Antioxidiant) เช่น วิตามิน E วิตามิน C สาร BHT


ปฏิกิริยาสะปอนนิฟิเคชัน (sponification)
เป็นปฏิกิริยาไฮโดรลิซิสไขมันและน้ำมันด้วยเบส เป็นปฏิกิริยาที่เกิดจากไขมันและน้ำมันกับด่าง เกิดเกลือของกรดไขมัน (RCOO -Na +) ซึ่งก็คือ สบู่ กับกลีเซอรอล ดังนี้


การตรวจหาปริมาณกรดไขมันไม่อิ่มตัวในไขมันและน้ำมัน
ไขมันและน้ำมันที่ประกอบด้วยกรดไขมันไม่อิ่มตัว (C = C) ทำปฏิกิริยากับสารละลาย Br 2 หรือ I 2 ได้เกิดปฏิกิริยาการเติมตรงบริเวณ C กับ C ที่จับกันด้วยพันธะคู่ของกรดไขมันไม่อิ่มตัวในไขมันและน้ำมันนั้นถ้าไขมันและน้ำมันชนิดใดสามารถฟอกจางสีของสารละลาย I 2 มาก แสดงว่าไขมันและน้ำมันนั้น ประกอบด้วยกรดไขมันไม่อิ่มตัวปริมาณมาก



สบู่ (Soap)
สบู่ คือ เกลือของกรดไขมัน สูตรทั่วไปคือ
สบู่ละลายน้ำแตกตัวให้ไอออนบวก และไอออนลบส่วนที่เป็นไอออนลบจะเป็นตัวที่ใช้ชำระล้าง สิ่งต่าง ๆ ทั้งหลายได้ สามารถละลายในตัวทำละลายมีขั้วและไม่มีขั้วได้ เพราะไอออนลบของสบู่ประกอบ ด้วยส่วนประกอบ 2 ส่วนย่อยดังนี้


สบู่ที่ดีควรมีจำนวน C อะตอมในหมู่ R พอเหมาะ เป็นสบู่ที่ละลายน้ำได้ดี แต่ถ้ามีจำนวน C อะตอมมากเกินไปละลายน้ำได้ดี

สบู่สามารถใช้ทดสอบความกระด้างของน้ำได้
น้ำกระด้าง : เป็นน้ำที่ประกอบด้วย Fe 2+, Mg 2+ และ Ca 2+ ของ HCO - 3, Cl - และ SO 2- 4
เราไม่นิยมใช้สบู่ซักผ้าเพราะในน้ำกระด้างจะมี แคลเซียม และ แมกนีเซียม อยู่ เมื่อทําปฏิกิริยากับสบู่จะเกิดเป็นเกลือแคลเซียม ( ไคลสบู่) ย้อนกลับมาติดเสื้อผ้าเราได้เนื่องจากสบู่จะเกิดตะกอนไอออนในน้ำกระด้างทำให้เกิดการสิ้นเปลืองในการใช้สบู่ จึงได้มี การสังเคราะห์สารอื่นใช้ชำระล้างซักฟอกได้เช่นเดียวกับสบู่ สารสังเคราะห์นั้นก็คือ ผงซักฟอก ซึ่งไม่ ตกตะกอนในน้ำกระด้าง
การละลายน้ำและการชำระล้างของสบู่
เมื่อสบู่ละลายน้ำจะแตกเป็นไอออน ไอออนบวกของโลหะจะถูกน้ำล้อมรอบ เกิดแรงดึงดูดระหว่างไอออนกับน้ำ เรียกว่าไฮเดรตชัน ส่วนไอออนลบของสบู่ประกอบด้วยส่วนที่เป็นคาร์บอกซิเลต (- COO -) เป็นส่วนที่มีขั้ว จะยึดกับน้ำโดยมีโมเลกุลน้ำล้อมรอบ และส่วนที่ไม่มีขั้วเป็นกลุ่มไฮโดรคาร์บอนจะหันเข้าหากัน แล้วจับกันเป็นกลุ่มก้อน เรียกว่า ไมเซลล์ (Micell) ดังภาพ



ผงซักฟอก
ผงซักฟอก (detergents) คือ เกลือของกรดซัลโฟนิก มีสมบัติชำระล้างสิ่งสกปรกทั้งหลายได้เช่นเดียวกับสบู่เป็นสารซักล้างที่ผลิตขึ้นมาใช้แทนสบู่ ซึ่งเป็นเกลือโซเดียมซัล-โฟเนตของไฮโดรคาร์บอน ผงซักฟอกมีข้อดีเหนือสบู่ คือ สามารถทำงานได้ดี แม้ ในน้ำกระด้างที่มีไอออน Ca 2+ Fe 2+ Fe 3+ และ Mg 2+ ถ้าหมู่แอลคิลเป็น เส้นตรง (LBS : Linear Alkylbenzene Sulfonate) จะถูกย่อยด้วยจุลินทรีย์ได้ดี เกิดมลพิษน้อย แต่ถ้าหมู่แอลคิลเป็น โซ่กิ่ง จุลินทรีย์จะย่อยได้ยาก


สูตรทั่วไปของผงซักฟอก เป็นดังนี้


ส่วนประกอบของผงซักฟอก
1. บิลเดอร์ ฟอสเฟต ปนอยู่ประมาณ 30-50% มีประโยชน์และหน้าที่ดังนี้
- ทำให้น้ำมีสภาพเป็นเบส เป็นการเพิ่มประสิทธิภาพในการชำระล้างสิ่งสกปรกทั้งหลายได้ดี
- ฟอสเฟตจะรวมตัวกับไอออนของโลหะในน้ำกระด้างเป็นสารเชิงซ้อน ทำให้ไอออนของโลหะในน้ำกระด้างไม่สามารถขัดขวางการกำจัดสิ่งสกปรกของผงซักฟอกได้
2. สารลดแรงตึงผิว เป็นสารที่ใช้ชำระล้างสิ่งสกปรกทั้งหลายได้ ได้แก่ เกลือโซเดียมแอลคิล-ซัลโฟเนต โซเดียมแอลคิลเบนซิลซัลโฟเนต ผสมอยู่ประมาณ 30%


ผลเสียที่เกิดจากการใช้ผงซักฟอก ทำให้เกิดมลภาวะของน้ำ
1. สารพวกฟอสเฟตเป็นปุ๋ยจากผงซักฟอกเมื่อปล่อยลงสู่แหล่งน้ำ จะทำให้พืชน้ำเจริญเติบโต รวดเร็ว ทำให้ขวางทางคมนาคมทางน้ำ ทำลายทัศนียภาพ ทำให้ O 2 ละลายน้ำไม่ได้ สิ่งมีชีวิต ขาด O 2 ตายได้ และพืชน้ำเกิดมากอาจจะตาย เน่า ทำให้น้ำเสีย2. ผงซักฟอกชนิด C ใน R แตกกิ่งก้านสาขาจุลินทรีย์ในน้ำสลายไม่ได้ ทำให้ตกค้างในน้ำ เมื่อ เข้าสู่ร่างกายของคนจะทำให้เกิดโรคภัยไข้เจ็บได้



โปรตีนและกรดอะมิโน
โปรตีน ( Protien) คือ สารชีวโมเลกุลประเภทสารอินทรีย์ที่ประกอบด้วยธาตุ C H O N เป็นองค์ประกอบสำคัญ นอกจากนั้นยังมีธาตุอื่น ๆ เช่น S P Fe Zn ทั้งนี้ขึ้นอยู่กับชนิดของโปรตีน โปรตีน เป็นสารพวกพอลิเมอร์ ประกอบด้วยกรดอะมิโนจำนวนมากมาย
กรดอะมิโน ( Amino Acid) คือ กรดอินทรีย์ชนิดหนึ่งที่มีหมู่คาร์บอกซิลและหมู่อะมิโนเป็นหมู่ฟังก์ชันสูตรทั่วไปดังนี้


ชนิดกรดอะมิโน
กรดอะมิโนที่พบเป็นองค์ประกอบของโปรตีนมี 20 ชนิด จำแนกตามความจำเป็นแก่ร่างกาย คือ
1. กรดอะมิโนที่จำเป็นแก่ร่างกาย (Essential amino acid ) ได้แก่ กรดอะมิโนที่ร่างกายสังเคราะห์ไม่ได้ หรือสังเคราะห์ได้แต่ไม่เพียงพอกับความต้องการของร่างกาย จำเป็นต้องได้รับจากอาหาร กรดอะมิโนเหล่านี้ ได้แก่ อาร์จินีน ( Arginine ) ฮีสทิดีน (Histidine ) ไอโซลิวซีน (Isoleucine ) ลิวซีน (Leucine ) ไลซีน (Lysine ) เมทิโอนีน (Methionine ) เฟนิลอะลานีน (Phenylalanine ) เทรโอนีน (Threonine ) ทริปโทเฟน (Tryptophan ) และวาลีน (Valine ) เด็กต้องการกรดอะมิโนที่จำเป็นแก่ร่างกาย 9 ตัวยกเว้นอาร์จินีน สำหรับผู้ใหญ่ต้องการกรดอะมิโนที่จำเป็นแก่ร่างกาย 8 ชนิด ยกเว้น อาร์จินีน และฮีสทิดีน

2. กรดอะมิโนที่ไม่จำเป็นแก่ร่างกาย ( Nonessential amino acid ) ได้แก่ กรดอะมิโนที่ร่างกายสังเคราะห์ขึ้นได้เพียงพอกับความต้องการของร่างกายไม่จำเป็นต้อง ได้รับจากอาหาร คือ อาจสังเคราะห์ขึ้นจากสารประกอบพวกไนโตรเจน หรือจากกรดอะมิโน ที่จำเป็นแก่ร่างกาย หรือจากไขมันหรือจากคาร์โบไฮเดรต กรดอะมิโนพวกนี้ได้แก่ กรดกลูแทมิก ไกลซีน ซีสทีน ไทโรซีน เป็นต้น ในเรื่องนี้มักมีคนเข้าใจผิดว่ากรดอะมิโนที่ไม่จำเป็นแก่ร่างกาย เป็นกรดอะมิโนที่ร่างกายไม่จำเป็นต้องใช้ ความจริงนั้นร่างกายต้องใช้กรดอะมิโนทั้งสองพวกในการสร้างโปรตีน แต่ที่เราเรียกว่าเป็นกรดอะมิโนที่ไม่จำเป็นนั้นเพราะเราคิดในแง่ที่ว่าร่างกายสร้างเองได้เพียงพอ จากการวิเคราะห์พบว่าโปรตีนในเซลล์ และเนื้อเยื่อของร่างกายมีกรดอะมิโนพวกนี้อยู่ร้อยละ 40

สมบัติของกรดอะมิโน
1. สถานะ ของแข็ง ไม่มีสี
2. การละลายน้ำ ละลายน้ำ เกิดพันธะไฮโดรเจนและแรงแวนเดอร์วาลส์
3. จุดหลอมเหลว สูง อยู่ระหว่าง 150 - 300 0C เพราะเกิดพันธะไฮโดรเจน
4. ความเป็นกรด- เบส Amphoteric substance

การเกิดพันธะเพปไทด์
พันธะเพปไทด์ คือ พันธะโคเวเลนต์ที่เกิดขึ้นระหว่าง C อะตอมในหมู่คาร์บอกซิล ( ) ของกรดอะมิโนโมเลกุลหนึ่งยึดกับ N อะตอม ในหมู่อะมิโน (-NH 2) ของกรดอะมิโนอีกโมเลกุลหนึ่ง ดังภาพสมการ




สมบัติของโปรตีน
1. การละลายน้ำ ไม่ละลายน้ำ บางชนิดละลายน้ำได้เล็กน้อย
2. ขนาดโมเลกุล และมวลโมเลกุล ขนาดใหญ่มีมวลโมเลกุลมาก
3. สถานะ ของแข็ง
4. การเผาไหม้ เผาไหม้มีกลิ่นไหม้
5. ไฮโดรลิซิส
6. การทำลายธรรมชาติ โปรตีนบางชนิดเมื่อได้รับความร้อน หรือเปลี่ยนค่า pH หรือเติมตัวทำลายอินทรีย์บางชนิด จะทำให้เปลี่ยนโครงสร้างจับเป็นก้อนตกตะกอน
7. การทดสอบโปรตีน ใช้ทดสอบกับสารละลายไบยูเรต (เป็นสารละลายผสมระหว่าง CuSO 4 กับ NaOH มีสีฟ้า) ซึ่งได้สารเชิงซ้อนของ Cu 2+ กับโปรตีน และให้ละลายที่มีสี ดังสมการ


หน้าที่ของโปรตีน
สร้างเนื้อเยื่อต่างๆ และซ่อมแซมส่วนที่สึกหรอในอวัยวะต่างๆ
เป็นส่วนประกอบของน้ำย่อย และฮอร์โมน
เป็นส่วนประกอบของสารเคมีที่สามารถต้านทานโรค
ให้พลังงาน คือ โปรตีน 1 กรัม ให้พลังงานประมาณ 4 แคลอรี
ร่างกายสามารถใช้โปรตีนแทนคาร์โบไฮเดรตได้




กรดนิวคลีอิก
กรดนิวคลีอิก (Nucleic acid) เป็นสารชีวโมเลกุลที่มีขนาดใหญ่ทำหน้าที่เก็บและถ่ายทอดข้อมูลทางพันธุ์กรรมของสิ่งมีชีวิต จากรุ่นหนึ่งไปยังรุ่นต่อไปให้แสดงลักษณะต่างๆ ของสิ่งมีชีวิต นอกจากนี้ยังทำหน้าที่ควบคุมการเจริญเติบโตและกระบวนการต่าง ๆ ของสิ่งมีชีวิต กรดนิวคลีอิกมี 2 ชนิดคือ DNA (Deoxyribonucleic acid) และ RNA (Ribonucleic acid) โมเลกุลของกรดนิวคลีอิก ประกอบด้วยหน่วยย่อยที่เรียกว่า นิวคลีโอไทด์ (Nucleotide) โมเลกุลของนิวคลีโอไทด์ประกอบด้วยส่วนย่อย 3 ส่วน ได้แก่
-หมู่ฟอสเฟต
-น้ำตาลที่มีคาร์บอน 5 อะตอม
-เบสที่มีไนโตรเจนเป็นองค์ประกอบ นิวคลีโอไทด์มีอยู่ด้วยกัน 5 ชนิดแตกต่างกันที่องค์ประกอบที่เป็นเบส
DNA และRNA มีน้ำตาลที่เป็นองค์ประกอบต่างกันใน DNA เป็นน้ำตาลดีออกซีไรโบส (Deoxyribose sugar) ส่วนใน RNA เป็นน้ำตาลไรโบส (Ribose sugar) เบสที่พบใน DNA และ RNA มีบางชนิดที่เหมือนกัน และบางชนิดต่างกัน ดังภาพ

นอกจากนี้นิวคลีโอไทด์ยังเป็นสารให้พลังงานในกระบวนการเมตาบอลิซึม ( Metabolism) เช่น ATP (Adenosine Triphosphate) ADP (Adenosine Diphosphate) และ AMP (Adenosine Monophosphate) ซึ่งจะแตกต่างกันตามจำนวนของหมู่ฟอสเฟต


นิวคลีโอไทด์จะเรียงตัวต่อกันเป็นสายยาว เรียกว่า พอลินิวพลีโอไทด์ (Polynucleotide) โมเลกุล DNA ประกอบด้วยพอลินิวคลีโอไทด์ 2 สายเรียงตัวสลับทิศทางกันและมีส่วนของเบสเชื่อมต่อกันด้วยพันธะไฮโดรเจน โมเลกุลบิดเป็นเกลียวคล้ายบันไดเวียน ดังภาพ ส่วน RNA เป็นพอลินิวคลีอิกเพียงสายเดียว





เอนไซม์
เอน ไซม์ (Enzymes ) เป็นโปรตีนชนิดหนึ่ง แต่เป็นโปรตีนที่ทําหน้าที่เชิงชีวภาพเฉพาะ (Specific biological functions) ซึ่งทําหน้าที่เป็น ตัวเร่งปฏิกิริยา ในสิ่งมีชีวิต โดยจะไป ลดพลังงานก่อกัมมันต์ (Activation energy ; Ea) และทําให้อนุภาคของสารตั้งต้น ( Substrate) ชนกันในทิศทางที่เหมาะสม มีผลทําให้ ปฏิกิริยาเกิดได้เร็วขึ้น ดังภาพ


จากกราฟ การหาพลังงานก่อกัมมันต์ (Ea) จากกราฟระหว่างพลังงานกับการดําเนินไปของปฏิกิริยาสามารถหาได้ โดยนําเอาพลังงานของสารตั้งต้นไปลบออกจากพลังงานที่จุดสูงสุดของการเกิดปฏิกิริยานั้นๆ ซึ่งการทำงานของเอนไซม์ มีขั้นตอนดังภาพ


ปัจจัยที่มีผลต่อการทำงานของเอนไซม์ มีดังนี้
1. ชนิดของเอนไซม์
2. ความเข้มข้นของสารตั้งต้น ( Substrate)
3. ความเป็นกรด - เบสของสารละลาย
4. อุณหภูมิ
5. การยับยั้งปฏิกิริยาของเอนไซม์ (Enzyme Inhibitors)

การเรียกชื่อเอนไซม์เอนไซม์
จะเรียกตามชนิดของสับสเตรตแล้วลงท้ายด้วย “ เ – ส ”
ตัวอย่าง เช่น
- ยูรีเอส เป็นเอนไซม์ใช้ไฮโดรไลซ์ยูเรีย
- ไลเปส เป็นเอนไซม์ที่อยู่ในน้ำลายใช้ย่อยแป้งในปาก

ปฎิกิริยาเคมี

ปฎิกิริยาเคมี






ปฏิกิริยาเคมีคือ ขบวนการที่สารตั้งต้นเปลี่ยนไปเป็นผลิตภัณฑ์ ในระหว่างการเกิดปฏิกิริยาเคมี ปริมาณของสารตั้งต้นย่อมลดลง ยิ่งเวลาผ่านไป ปริมาณของสารตั้งต้นก็จะยิ่งเหลือน้อยลง และปริมาณของผลิตภัณฑ์ก็จะเพิ่มมากขึ้น




ปฏิกิริยาเคมี มี 2 ประเภท คือ

1. ปฏิกิริยาคายพลังงาน (Exergonic reaction) หมายถึง ปฏิกิริยาที่เกิดขึ้นแล้วจะปล่อยพลังงานออกมามากกว่า พลังงานกระตุ้นที่ใส่เข้าไป

2.ปฏิกิริยาดูดพลังงาน (Endergonic reaction) หมายถึง ปฏิกิริยาที่เกิดขึ้นแล้วจะปล่อยพลังงานออกมาน้อยกว่า พลังงานกระตุ้นที่ใส่เข้าไป







ทฤษฎีที่อธิบายเกี่ยวกับการเกิดปฏิกิริยาเคมี
Collision theory ( ทฤษฎี การชนกัน) ทฤษฎีนี้กล่าวว่า ปฏิกิริยาเกิดจากโมเลกุลของก๊าซวิ่งชนกัน และมีการถ่ายเทพลังงานให้กันละกัน โมเลกุลที่ไปชนโมเลกุลอื่นจะมีพลังงานต่ำลง ส่วนโมเลกุลที่ถูกชนจะมีพลังงานสูงขึ้นโมเลกุลที่เกิดปฏิกิริยา ได้ขึ้นอยู่กับ
1. โมเลกุลวิ่งชนกันแล้วมีพลังงานสูงอย่างน้อยเท่ากับค่า Ea (พลังงานกระตุ้น หรือพลังงานก่อกัมมันต์)
2. ทิศทางการชนกัน ต้องชนกันในทิศทางที่เหมาะสม จึงจะเกิดปฏิกิริยา


ปัจจัยที่มีผลต่อปฏิกิริยาเคมี
1. ธรรมชาติของสารตั้งต้น : สารตั้งต้นบางชนิดทำปฏิกิริยาได้เร็วแต่บางชนิดทำปฏิกิริยาได้ช้า เช่น แผ่นโลหะทองแดง หรือแผ่นโลหะเงินจะทำปฏิกิริยากับออกซิเจนได้ช้ามาก แม้ว่าจะใช้เปลวไฟช่วยก็ไม่สามารถทำให้ปฏิกิริยาเกิดเร็วได้ ส่วนแผ่นโลหะแมกนีเซียมสามารถติดไฟได้เร็วมาก หรือฟอสฟอรัสขาวสามารถติดไฟได้เลยในอากาศ เป็นต้น
2. ความเข้มข้นของสารตั้งต้น :สารที่มีความเข้มข้นมากจะเกิดปฏิกิริยาได้เร็วกว่าสารที่มีความเข้มข้นน้อย การเพิ่มปริมาตรโดยมีความเข้มข้นเท่าเดิมการเกิดปฏิกิริยาก็ยังคเท่าเดิม
3. พื้นที่ผิวของสารตั้งตัน : การเพิ่มพื้นที่ผิวจะทำให้ปฏิกิริยาเกิดขึ้นได้เร็ว แต่จะมีผลต่อปฏิกิริยาเนื้อผสมเท่านั้นการเพิ่ม พ.ท. ผิวก็คือการเพิ่มความถี่ในการชนกันนั้นเอง
4. อุณหภูมิ : การเพิ่ม อุณหภูมิ เป็นการเพิ่มพลังงานจลน์ให้แก่อนุภาค ทำให้อนุภาคเคลื่อนที่เร็วขึ้น จึงเพิ่มโอกาสการชนกัน 5. ตัวเร่ง และตัวหน่วง ปฏิกิริยา มันจะไปลด / เพิ่ม Eaของปฏิกิริยา :ตัวเร่งปฏิกิริยา(catalyst)เป็นสารที่ช่วยเร่งให้ปฏิกิริยาเกิดได้เร็วขึ้น ตัวหน่วงปฏิกิริยา(Inhibitor)เป็นสารที่เมื่อเติมลงไปในปฏิกิริยาแล้วมีผลทำให้ เกิดปฏิกิริยาได้ช้าลง หรือหยุดยั้งปฏิกิริยาได้อย่างสิ้นเชิง

By:http://variety.teenee.com/science/1874.html

พันธะเคมี



พันธะเคมี




พันธะเคมี (Chemical Bonding)

กฎออกเตต เป็นการจัดเรียงอิเล็กตรอนของอะตอมให้ได้ครบ 8 ตัวพันธะเคมี เป็นแรงยึดเหนี่ยวภายในและภายนอกระหว่างอะตอม โมเลกุล หรือไอออน

พันธะเคมีเกิดจากเวเลนซ์อิเล็กตรอน (อิเล็กตรอนในระดับพลังงานนอกสุด) ของอะตอมนั้นมีจำนวนอิเล็กตรอนครบ 8 ตัว ซึ่งเป็นไปตามกฎออกเตต ทำให้ธาตุนั้นเสถียร ด้วยวิธีการต่างๆ คือ

1. ให้อิเล็กตรอนกับอะตอม

2. รับอิเล็กตรอนจากอะตอมอื่น

3. ใช้อิเล็กตรอนร่วมกันกับอะตอมอื่น

ซึ่งแบ่งออกได้ 6 ชนิด คือ พันธะไอออนิก พันธะโควาเลนต์ พันธะโควาเลนต์ พันธะไฮโดรเจน พันธะโลหะ และแรงแวนเดอร์วาลส์

พันธะไอออนิก(lonic band)คือ แรงยึดเหนี่ยวที่เกิดในสาร โดยที่อะตอมของธาตุที่มีค่าพลังงานไอออไนเซชันต่ำ ให้เวเลนต์อิเล็กตรอนแก่อะตอมของธาตุที่มีค่าพลังงานไอออนไนเซชันสูง กลายเป็นไอออนที่มีประจุบวกและประจุลบ เมื่อไอออนทั้งสองเข้ามาอยู่ใกล้กันจะเกิดแรงดึงดูดทางไฟฟ้าที่แข็งแรงระหว่างประจุไฟฟ้าตรงข้ามเหล่านั้น ทำให้ไอออนทั้งสองยึดเหนี่ยวกัน เช่น

การเกิดสารประกอบโซเดียมคลอไรด์ (NaCl) จากโซเดียม (Na) อะตอมคลอรีน (Cl) อะตอมอะตอมโลหะ Na เลขอะตอม = 11 มีการจัดเรียงอิเล็กตรอน 2,8,1อะตอมโลหะ Cl เลขอะตอม = 17 มีการจัดเรียงอิเล็กตรอน 2,8,7ดังนั้น Na จะสูญเสียอิเล็กตรอน 1 ตัว ส่วน Cl จะรับอิเล็กตรอน ทำให้มีการจัดเรียงเป็น 2, 8 , 8 เมื่อโลหะรวมกับอโลหะด้วยพันธะไอออนิก เกิดเป็นสารประกอบไอออนิกโดยอะตอมโลหะให้อิเล็กตรอนเกิดเป็นไอออนบวก และอะตอมของอโลหะรับอิเล็กตรอนเกิดเป็นไอออนลบ ซึ่งเป็นสารที่แข็งแต่เปราะ มีจุดเดือดและจุดหลอมเหลวสูงเพราะอยู่ในสภาพไอออน สามารถละลายน้ำได้ดี ไม่นำไฟฟ้าอยู่ในสถานะของแข็ง แต่ถ้าไปทำให้หลอมจนเป็นของเหลวจะนำไฟฟ้าได้




ตัวอย่าง โครงสร้างสารประกอบไอออนิก NaCl







พันธะโคเวเลนต์(covalent bond) หมายถึง พันธะที่เกิดจากการใช้เวเลนซ์อิเล็กตรอนร่วมกัน ดังเช่น ในกรณีของไฮโดรเจน ดังนั้นลักษณะที่สำคัญของพันธะโคเวเลนต์ก็คือการที่อะตอมใช้เวเลนต์อิเล็กตรอนร่วมกันเป็นคู่ ๆสารประกอบที่อะตอมแต่ละคู่ยึดเหนี่ยวกันด้วยพันธะโคเวเลนต์ เรียกว่า สารโคเวเลนต์โมเลกุลของสารที่อะตอมแต่ละคู่ยึดเหนี่ยวกันด้วยพันธะโคเวเลนต์ เรียกว่า โมเลกุลโคเวเลนต์


พันธะโคออร์ดิเนตโควาเลนต์ คล้ายกับพันธะโควาเลนต์ คือ มีการใช้อิเล็กตรอนร่วมกันแต่ต่างกันที่พันธะพันธะโคออร์ดิเนตโควาเลนต์มีอะตอมใดอะตอมหนึ่งเป็นตัวให้อิเล็กตรอนถึง 2 ตัว ส่วนอีกอะตอมหนึ่งเข้ามาใช้คู่อิเล็กตรอนเท่านั้น ไม่ต้องนำอิเล็กตรอนมาด้วย


แรงแวนเดอร์วาลส์(van der waals force) บางทีเรียกว่า แรงลอนดอน เป็นแรงยึดเหนี่ยวระหว่างโมเลกุล ซึ่งเป็นแรงดึงดูดระหว่างนิวเคลียสที่มีประจุบวกของโมเลกุลกับกลุ่มหมอกอิเล็กตรอนของโมเลกุลที่อยู่ใกล้เคียง แรงนี้เป็นแรงที่อ่อนมากเมื่อเทียบกับแรงในพันธะไอออนิกและพันธะโควาเลนต์ ถ้าโมเลกุลยิ่งห่างกันมากแรงนี้จะยิ่งน้อยจนแทบไม่มีเลย แรงแวนเดอวาลส์จะเพิ่มขึ้นเมื่อจำนวนอิเล็กตรอนและน้ำหนักโมเลกุลเพิ่ม แรงชนิดนี้จะพบในโมเลกุลทุกตัว มีความสำคัญกับแก๊สเป็นอย่างมาก ด้วยเหตุที่ว่าแก๊สมีจุดหลอมเหลวและจุดเดือดต่ำก็เพราะโมเลกุลของแก๊สยึดกันด้วยแรงแวนเดอร์วาลส์


พันธะไฮโดรเจน(hydrogen bond) คือ แรงดึงดูดระหว่างโมเลกุลที่เกิดจากอะตอมของไฮโดรเจนในสารประกอบหนึ่งกับธาตุที่มีขนาดอะตอมเล็กๆ แต่มีความสามารถในการดึงดูดอิเล็กตรอนเข้าหาตัวเองได้สูง เช่น F , O และ N ที่อยู่ในอีกสารประกอบหนึ่ง** เมื่อนำมาเรียงลำดับ ความแข็งแรงของแรงยึดเหนี่ยวของโมเลกุลต่าง ๆ จากน้อยไปหามาก เป็นแรงแวนเดอร์วาลส์ < พันธะไฮโดรเจน < พันธะโคเวเลนต์


พันธะโลหะ (Metallic bond) คือ พันธะที่เกิดเนื่องจากแรงดึงดูดระหว่างไอออนบวกซึ่งเรียงชิดกันกับเวเลนต์อิเล็กตรอนที่เคลื่อนที่อยู่โดยรอบทั้งก้อนโลหะ และการที่เวเลนต์อิเล็กตรอนเคลื่อนที่ได้อย่างอิสระ เพราะโลหะเป็นธาตุที่มีเวเลนต์อิเล็กตรอนน้อยและมีค่าพลังงานไอออนไนเซชันต่ำ จึงทำให้เกิดกลุ่มหมอกอิเล็กตรอนและไอออนบวกได้ง่ายโดยที่คุณสมบัติของโลหะนั้นจะเป็นธาตุที่เป็นของแข็ง (ยกเว้นปรอทที่เป็นของเหลว) นำไฟฟ้าได้ดีมากกว่าอิเล็กตรอนเคลื่อนที่ไปมาตลอดเวลา มีผิวมันวาว มีจุดเดือดและจุดหลอมเหลวสูง นำความร้อนได้ดี และสามารถตีแผ่เป็นแผ่นบางๆได้







10 กรกฎาคม 2552

ฟิ สิ ก,,*

โครงสร้างอะตอม



อะตอม (Atoms)
อะตอมเป็นอนุภาคเล็กๆ ที่เป็นองค์ประกอบของธาตุทุกชนิด อะตอมของธาตุใดๆ จะมีลักษณะเป็นทรงกลม ซึ่งภายในจะมีนิวเคลียสเป็นแกนกลางและมีกลุ่มหมอกของอนุถาคที่เล็กมากห่อหุ้มอยู่ซึ่งเรียกว่า อิเล็กตรอน
แบบจำลองอะตอมของดอลตัน สารทุกชนิดประกอบด้วยอนุภาคขนาดเล็กที่สุดเรียกว่า "อะตอม" อะตอมจะไม่สามารถแบ่งแยกได้ และไม่สามารถสร้างขึ้นใหม่ได้ อะตอมของธาตุชนิดเดียวกันจะมีสมบัติเหมือนกันทุกประการ อะตอมของธาตุต่างกันจะมีสมบัติต่างกัน ธาตุตั้งแต่สองชนิดขึ้นไปสามารถรวมตัวกันเกิดเป็นสารประกอบ โดยมีอัตราส่วนการรวมตัวเป็นตัวเลขอย่างง่าย
แบบจำลองอะตอมของทอมสัน อะตอมมีลักษณะเป็นทรงกลม ประกอบด้วยอนุภาคอิเล็กตรอนที่มีประจุเป็นลบ อนุภาคโปรตรอนมีประจุเป็นบวก โปรตรอนและอิเล็กตรอนกระจายอยู่ทั่วไปอย่างสม่ำเสมอ อะตอมเป็นกลางทางไฟฟ้า เพราะ มีจำนวนประจุบวกเท่ากับประจุลบ
แบบจำลองอะตอมของรัทเทอร์ฟอร์ด อะตอมมีศูนย์กลางซึ่งเรียกว่า นิวเคลียส ซึ่งมีขนาดเล็ก มีประจุบวกเรียกว่าโปรตอนอยู่ และมีประจุลบที่เรียกว่าอิเล็กตรอนวิ่งอยู่ภายนอก
แบบจำลองอะตอม นีลส์ โบร์ อะตอมเคลื่อนที่รอบนิวเคลียสเป็นวงกลมโดยแต่ละวงจะมีระดับพลังงานแตกต่างกันไป



โครงสร้างอะตอม
อะตอมมีลักษณะเป็นทรงกลมแบบกลุ่มหมอก ประกอบด้วยอนุภาคมูลฐานที่มีมวลน้อยมาก 3ชนิดได้แก่ นิวตรอน (Neutron) โปรตอน (Proton) และอิเล็กตรอน (Electron)มีนิวเคลียสอยู่ตรงกลางซึ่งภายในประกอบด้วยอนุภาคของนิวตรอนและโปรตอนอยู่ อาจเรียกว่านิวคลิออน (Nucleon) มีอิเล็กตรอนเคลื่อนที่ไปรอบๆนิวเคลียส ซึ่งไม่สามารถกำหนดความเร็ว ทิศทางและตำแหน่งที่แน่นอนได้ จึงทำให้โอกาส ที่จะพบอิเล็กตรอนในบริเวณหนึ่งๆไม่สม่ำเสมอ บริเวณที่สามารถพบอิเล็กตรอนได้ถูกเรียกว่า ออร์บิทัล (Orbital)บริเวณที่ใกล้นิวเคลียสมากที่สุดจะมีกลุ่มหมอกอิเล็กตรอนที่หนาแน่นที่สุด ระดับพลังงานของอิเล็กตรอนถูกกำหนดให้แทนด้วย n = 1 และเมื่อห่างจากนิวเคลียสมากขึ้น ความหนาแน่นของกลุ่มหมอกอิเล็กตรอนจะน้อยลง ค่าของระดับพลังงานของอิเล็กตรอนจะถูกกำหนดให้แทนด้วย n = 2 n = 3 n = 4 ตามลำดับ
รูป แสดงโครงสร้างอะตอม


การจัดเรียงอิเล็กตรอน
การจัดแบ่งอิเล็กตรอนที่โคจรในอะตอมจะแบ่งตามกลุ่มของระดับพลังงาน (n) โดยจำนวนอิเล็กตรอนที่มากที่สุดในแต่ละระดับพลังงานมีค่าไม่เกิน 2n2
n = 1 จำนวน 2 อิเล็กตรอน
n = 2 จำนวน 8 อิเล็กตรอน
n = 3 จำนวน 18 อิเล็กตรอน
n = 4 จำนวน 32 อิเล็กตรอน
จำนวนอิเล็กตรอนในระดับพลังงานนอกสุด (Valence Electron) จะมีได้มากที่สุดไม่เกิน8 อิเล็กตรอน
เลขอะตอม (Atomic Number : Z) คือ จำนวนโปรตอนในนิวเคลียสของแต่ละอะตอมของธาตุ ซึ่งปกติอะตอมที่เป็นกลางจะมีจำนวน ประจุบวกเท่ากับประจุลบเสมอ จึงทำให้จำนวนโปรตอนกับจำนวนอิเล็กตรอนของธาตุมีค่าเท่ากัน
เลขอะตอม = จำนวนโปรตอน = จำนวนอิเล็กตรอน
เลขมวล (Mass Number : A) คือ ผลรวมของจำนวนนิวตรอนกับจำนวนโปรตอนที่อยู่ในนิวเคลียสของอะตอม ยกเว้นอะตอมของไฮโดรเจน ซึ่งมีจำนวนโปรตอน 1 ตัว ไม่มีนิวตรอน
เลขมวล = จำนวนโปรตอน + จำนวนนิวตรอน= เลขอะตอม + จำนวนนิวตรอน
สัญลักษณ์นิวเคลียส (Nuclear Symbol) เมื่อ A แทน เลขมวล Z แทน เลขอะตอม X แทน สัญลักษณ์ของธาตุเช่น ธาตุโซเดียมเลขอะตอม = จำนวนโปรตอน = จำนวนอิเล็กตรอน11 = จำนวนโปรตอน = จำนวนอิเล็กตรอน
เลขมวล = จำนวนโปรตอน + จำนวนนิวตรอน23 = 11 + จำนวนนิวตรอน
จำนวนนิวตรอน = 23 - 11 = 12นั่นคือ ธาตุโซเดียมมีจำนวนโปรตอน
, อิเล็กตรอนและนิวตรอนเท่ากับ 11, 11, 12 ตามลำดับคลิ๊กดูเพิ่มเติม

ไอโซโทป คือ อะตอมของธาตุชนิดเดียวกันซึ่งมีจำนวนโปรตอนเท่ากันแต่มีจำนวนนิวตรอนไม่เท่ากัน ซึ่งการที่มีจำนวนนิวตรอนไม่เท่ากันนี้เอง ทำให้เลขมวลไม่เท่ากัน ตัวอย่างเช่น ไอโซโทปของธาตุคาร์บอนซึ่งอาจพบในรูปของคาร์บอน –12 และคาร์บอน –14


รูป ไอโซโทปของคาร์บอน





โมเลกุล (Molecule) คือ กลุ่มอะตอมอย่างน้อย 2 อะตอม ที่มารวมกันอยู่ด้วยแรงดึงดูดทางเคมี โดยโมเลกุลนั้นอาจประกอบด้วยอะตอมของธาตุชนิดเดียวกัน หรือ อะตอมของธาตุตั้งแต่สองชนิดขึ้นไปมารวมกันอยู่ด้วยอัตราส่วนที่แน่นอนตามกฎสัดส่วนคงที่ เช่น H2 , H2Oไอออน (Ion) คือ อะตอมหรือกลุ่มอะตอมที่มีประจุ จากการที่อะตอมเป็นกลางทำให้จำนวนโปรตอน (ประจุบวก) และจำนวนอิเล็กตรอน (ประจุลบ) เท่ากัน ถ้าอะตอมที่เป็นกลางนั้นรับอิเล็กตรอนเพิ่มเข้ามาจะทำให้จำนวนอิเล็กตรอนมากกว่าจำนวนโปรตอนเกิดเป็นไอออนลบ (Negative Ion) ขึ้น ในทางตรงข้าม ถ้าอะตอมที่เป็นกลางนั้นสูญเสียอิเล็กตรอนจะทำให้จำนวนอิเล็กตรอนน้อยกว่าจำนวนโปรตอนเกิดเป็นไอออนบวก (Positive Ion)

ธาตุและสารประกอบธาตุ (Element) คือ สารที่ไม่สามารถแยกออกเป็นสารอื่นได้ด้วยวิธีการทางเคมี ปัจจุบัน
มีธาตุทั้งหมด 118 ธาตุ เป็นธาตุที่เกิดในธรรมชาติ 83 ธาตุ และธาตุที่นักวิทยาศาสตร์ทำการสังเคราะห์ด้วยกระบวนการนิวเคลียร์ สัญลักษณ์ของธาตุจะใช้เฉพาะสำหรับธาตุหนึ่งๆ โดยตัวอักษรตัวแรกจะต้องเขียนด้วยตัวอักษรตัวใหญ่เสมอ และถ้ามีอักษรที่สองจะใช้ตัวเล็ก เช่น C Co เป็นต้น
ธาตุแบ่งออกเป็น 3 กลุ่มใหญ่ๆ คือ โลหะ อโลหะ และกึ่งโลหะ

สารประกอบ (Compound) คือ สารที่ประกอบด้วยอะตอมของธาตุตั้งแต่ 2 ชนิดขึ้นไปมารวมกันทางเคมีในอัตราส่วนที่แน่นอน เช่น น้ำประกอบด้วย ไฮโดรเจน H 2 ส่วน และออกซิเจน O 1 ส่วน เขียนแทนเป็น H2O


ตารางพีริออดิก หรือ ตารางธาตุ (Periodic Table)
ตารางธาตุ คือ ตารางที่รวบรวมธาตุต่าง ๆ เข้าเป็นหมวดหมู่ ตามคุณสมบัติที่เหมือน ๆ กัน ไว้เป็นพวกเดียวกัน เพื่อสะดวกในการจดจำและศึกษา
ตารางธาตุ เป็นตารางที่เรียงตามเลขอะตอมจากซ้ายไปขวา และให้ธาตุที่มีสมบัติคล้ายกันอยู่ในแนวดิ่งเดียวกัน ตารางธาตุ แบ่งธาตุเป็นแนวนอน 7 แถว เรียกว่า คาบ (Period) และแนวตั้ง 18 แถว เรียกว่า หมู่ (Group) แถวตั้งหรือหมู่แบ่งออกเป็นหมู่A เรียกว่า
ธาตุเรพรีเซนเตติฟ (Representative elements) โดยธาตุหมู่ A จะมีหมู่ 1A ถึงหมู่ 8A เมื่อ
หมู่ 1A เป็นธาตุที่มีความเป็นโลหะมากที่สุดเรียกว่า โลหะแอลคาไล (Alkali Metal)
หมู่ 2A เรียกว่า โลหะแอลคา ไลน์เอิร์ท (Alkaline Earth Metal)
หมู่ 7A มีความเป็นอโลหะมากที่สุดเรียกว่า แฮโลเจน (Halogen)
หมู่ 8A เรียกว่า แก๊สเฉื่อย หรือแก๊สมีตระกูล (Noble Gas)
และหมู่ B เรียกว่า ธาตุทรานซิชัน (Transition elements)